

    
      
          
            
  
Semver 3.0.0-dev.3 – Semantic Versioning

If you are searching for how to stay compatible
with semver3, refer to Migrating from semver2 to semver3.


Warning

This is a development version. Do NOT use it
in production before the final 3.0.0 is released.





Quickstart

A Python module for semantic versioning [http://semver.org/]. Simplifies comparing versions.

[image: Python] [image: Python versions] [https://pypi.org/project/semver] [image: Monthly downloads from PyPI] [https://pypi.org/project/semver] [image: Software license] [https://github.com/python-semver/python-semver/blob/master/LICENSE.txt] [image: Documentation Status] [http://python-semver.readthedocs.io/en/latest/?badge=latest] [image: Black Formatter] [https://github.com/psf/black]
[image: Percentage of open issues] [http://isitmaintained.com/project/python-semver/python-semver] [image: GitHub Discussion] [https://github.com/python-semver/python-semver/discussions]


Note

This project works for Python 3.6 and greater only. If you are
looking for a compatible version for Python 2, use the
maintenance branch maint/v2 [https://github.com/python-semver/python-semver/tree/maint/v2].

The last version of semver which supports Python 2.7 to 3.5 will be
2.x.y However, keep in mind, the major 2 release is frozen: no new
features nor backports will be integrated.

We recommend to upgrade your workflow to Python 3.x to gain support,
bugfixes, and new features.



The module follows the MAJOR.MINOR.PATCH style:


	MAJOR version when you make incompatible API changes,


	MINOR version when you add functionality in a backwards compatible manner, and


	PATCH version when you make backwards compatible bug fixes.




Additional labels for pre-release and build metadata are supported.

To import this library, use:

>>> import semver





Working with the library is quite straightforward. To turn a version string into the
different parts, use the semver.Version.parse function:

>>> ver = semver.Version.parse('1.2.3-pre.2+build.4')
>>> ver.major
1
>>> ver.minor
2
>>> ver.patch
3
>>> ver.prerelease
'pre.2'
>>> ver.build
'build.4'





To raise parts of a version, there are a couple of functions available for
you. The function semver.Version.bump_major leaves the original object untouched, but
returns a new semver.Version instance with the raised major part:

>>> ver = semver.Version.parse("3.4.5")
>>> ver.bump_major()
Version(major=4, minor=0, patch=0, prerelease=None, build=None)





It is allowed to concatenate different “bump functions”:

>>> ver.bump_major().bump_minor()
Version(major=4, minor=1, patch=0, prerelease=None, build=None)





To compare two versions, semver provides the semver.compare function.
The return value indicates the relationship between the first and second
version:

>>> semver.compare("1.0.0", "2.0.0")
-1
>>> semver.compare("2.0.0", "1.0.0")
1
>>> semver.compare("2.0.0", "2.0.0")
0





There are other functions to discover. Read on!












Indices and Tables


	Index


	Module Index


	Search Page







            

          

      

      

    



  
  
    
    

    Installing semver
    

    

    
 
  

    
      
          
            
  
Installing semver


Release Policy

As semver uses Semantic Versioning [http://semver.org/], breaking changes are only introduced in major
releases (incremented X in “X.Y.Z”).

For users who want to stay with major 2 releases only, add the following version
restriction:

semver>=2,<3





This line avoids surprises. You will get any updates within the major 2 release like
2.11.0 or above. However, you will never get an update for semver 3.0.0.

Keep in mind, as this line avoids any major version updates, you also will never
get new exciting features or bug fixes.

You can add this line in your file setup.py, requirements.txt, or any other
file that lists your dependencies.



Pip

pip3 install semver





If you want to install this specific version (for example, 2.10.0), use the command pip
with an URL and its version:

pip3 install git+https://github.com/python-semver/python-semver.git@2.11.0







Linux Distributions


Note

Some Linux distributions can have outdated packages.
These outdated packages does not contain the latest bug fixes or new features.
If you need a newer package, you have these option:



	Ask the maintainer to update the package.


	Update the package for your favorite distribution and submit it.


	Use a Python virtual environment and pip install.










Arch Linux


	Enable the community repositories first:

[community]
Include = /etc/pacman.d/mirrorlist







	Install the package:

$ pacman -Sy python-semver











Debian


	Update the package index:

$  sudo apt-get update







	Install the package:

$ sudo apt-get install python3-semver











Fedora

$ dnf install python3-semver







FreeBSD

$ pkg install py36-semver







openSUSE


	Enable the devel:languages:python repository of the Open Build Service:

$ sudo zypper addrepo --refresh obs://devel:languages:python devel_languages_python







	Install the package:

$ sudo zypper install --repo devel_languages_python python3-semver











Ubuntu


	Update the package index:

$ sudo apt-get update







	Install the package:

$ sudo apt-get install python3-semver














            

          

      

      

    



  
  
    
    

    Using semver
    

    

    
 
  

    
      
          
            
  
Using semver

The semver module can store a version in the Version class.
For historical reasons, a version can be also stored as a string or dictionary.

Each type can be converted into the other, if the minimum requirements
are met.


Getting the Implemented semver.org Version

The semver.org page is the authoritative specification of how semantic
versioning is defined.
To know which version of semver.org is implemented in the semver library,
use the following constant:

>>> semver.SEMVER_SPEC_VERSION
'2.0.0'







Getting the Version of semver

To know the version of semver itself, use the following construct:

>>> semver.__version__
'3.0.0-dev.3'







Creating a Version


Changed in version 3.0.0: The former VersionInfo
has been renamed to Version.



The preferred way to create a new version is with the class
Version.


Note

In the previous major release semver 2 it was possible to
create a version with module level functions.
However, module level functions are marked as deprecated
since version 2.x.y now.
These functions will be removed in semver 3.1.0.
For details, see the sections Replacing Deprecated Functions
and Displaying Deprecation Warnings.



A Version instance can be created in different ways:


	From a Unicode string:

>>> from semver.version import Version
>>> Version.parse("3.4.5-pre.2+build.4")
Version(major=3, minor=4, patch=5, prerelease='pre.2', build='build.4')
>>> Version.parse(u"5.3.1")
Version(major=5, minor=3, patch=1, prerelease=None, build=None)







	From a byte string:

>>> Version.parse(b"2.3.4")
Version(major=2, minor=3, patch=4, prerelease=None, build=None)







	From individual parts by a dictionary:

>>> d = {'major': 3, 'minor': 4, 'patch': 5,  'prerelease': 'pre.2', 'build': 'build.4'}
>>> Version(**d)
Version(major=3, minor=4, patch=5, prerelease='pre.2', build='build.4')





Keep in mind, the major, minor, patch parts has to
be positive integers or strings:

>>> d = {'major': -3, 'minor': 4, 'patch': 5,  'prerelease': 'pre.2', 'build': 'build.4'}
>>> Version(**d)
Traceback (most recent call last):
...
ValueError: 'major' is negative. A version can only be positive.





As a minimum requirement, your dictionary needs at least the major
key, others can be omitted. You get a TypeError if your
dictionary contains invalid keys.
Only the keys major, minor, patch, prerelease, and build
are allowed.



	From a tuple:

>>> t = (3, 5, 6)
>>> Version(*t)
Version(major=3, minor=5, patch=6, prerelease=None, build=None)





You can pass either an integer or a string for major, minor, or
patch:

>>> Version("3", "5", 6)
Version(major=3, minor=5, patch=6, prerelease=None, build=None)









The old, deprecated module level functions are still available but
using them are discoraged. They are available to convert old code
to semver3.

If you need them, they return different builtin objects (string and dictionary).
Keep in mind, once you have converted a version into a string or dictionary,
it’s an ordinary builtin object. It’s not a special version object like
the Version class anymore.

Depending on your use case, the following methods are available:


	From individual version parts into a string

In some cases you only need a string from your version data:

>>> semver.format_version(3, 4, 5, 'pre.2', 'build.4')
'3.4.5-pre.2+build.4'







	From a string into a dictionary

To access individual parts, you can use the function semver.parse():

>>> semver.parse("3.4.5-pre.2+build.4")
OrderedDict([('major', 3), ('minor', 4), ('patch', 5), ('prerelease', 'pre.2'), ('build', 'build.4')])





If you pass an invalid version string you will get a ValueError:

>>> semver.parse("1.2")
Traceback (most recent call last):
...
ValueError: 1.2 is not valid SemVer string











Parsing a Version String

“Parsing” in this context means to identify the different parts in a string.
Use the function Version.parse:

>>> Version.parse("3.4.5-pre.2+build.4")
Version(major=3, minor=4, patch=5, prerelease='pre.2', build='build.4')







Checking for a Valid Semver Version

If you need to check a string if it is a valid semver version, use the
classmethod Version.isvalid:

>>> Version.isvalid("1.0.0")
True
>>> Version.isvalid("invalid")
False







Accessing Parts of a Version Through Names

The Version class contains attributes to access the different
parts of a version:

>>> v = Version.parse("3.4.5-pre.2+build.4")
>>> v.major
3
>>> v.minor
4
>>> v.patch
5
>>> v.prerelease
'pre.2'
>>> v.build
'build.4'





However, the attributes are read-only. You cannot change any of the above attributes.
If you do, you get an AttributeError:

>>> v.minor = 5
Traceback (most recent call last):
...
AttributeError: attribute 'minor' is readonly





If you need to replace different parts of a version, refer to section Replacing Parts of a Version.

In case you need the different parts of a version stepwise, iterate over the Version instance:

>>> for item in Version.parse("3.4.5-pre.2+build.4"):
...     print(item)
3
4
5
pre.2
build.4
>>> list(Version.parse("3.4.5-pre.2+build.4"))
[3, 4, 5, 'pre.2', 'build.4']







Accessing Parts Through Index Numbers


New in version 2.10.0.



Another way to access parts of a version is to use an index notation. The underlying
Version object allows to access its data through
the magic method __getitem__().

For example, the major part can be accessed by index number 0 (zero).
Likewise the other parts:

>>> ver = Version.parse("10.3.2-pre.5+build.10")
>>> ver[0], ver[1], ver[2], ver[3], ver[4]
(10, 3, 2, 'pre.5', 'build.10')





If you need more than one part at the same time, use the slice notation:

>>> ver[0:3]
(10, 3, 2)





Or, as an alternative, you can pass a slice() object:

>>> sl = slice(0,3)
>>> ver[sl]
(10, 3, 2)





Negative numbers or undefined parts raise an IndexError exception:

>>> ver = Version.parse("10.3.2")
>>> ver[3]
Traceback (most recent call last):
...
IndexError: Version part undefined
>>> ver[-2]
Traceback (most recent call last):
...
IndexError: Version index cannot be negative







Replacing Parts of a Version

If you want to replace different parts of a version, but leave other parts
unmodified, use the function replace:


	From a Version instance:

>>> version = semver.Version.parse("1.4.5-pre.1+build.6")
>>> version.replace(major=2, minor=2)
Version(major=2, minor=2, patch=5, prerelease='pre.1', build='build.6')







	From a version string:

>>> semver.replace("1.4.5-pre.1+build.6", major=2)
'2.4.5-pre.1+build.6'









If you pass invalid keys you get an exception:

>>> semver.replace("1.2.3", invalidkey=2)
Traceback (most recent call last):
...
TypeError: replace() got 1 unexpected keyword argument(s): invalidkey
>>> version = semver.Version.parse("1.4.5-pre.1+build.6")
>>> version.replace(invalidkey=2)
Traceback (most recent call last):
...
TypeError: replace() got 1 unexpected keyword argument(s): invalidkey







Converting a Version instance into Different Types

Sometimes it is needed to convert a Version instance into
a different type. For example, for displaying or to access all parts.

It is possible to convert a Version instance:


	Into a string with the builtin function str():

>>> str(Version.parse("3.4.5-pre.2+build.4"))
'3.4.5-pre.2+build.4'







	Into a dictionary with to_dict:

>>> v = Version(major=3, minor=4, patch=5)
>>> v.to_dict()
OrderedDict([('major', 3), ('minor', 4), ('patch', 5), ('prerelease', None), ('build', None)])







	Into a tuple with to_tuple:

>>> v = Version(major=5, minor=4, patch=2)
>>> v.to_tuple()
(5, 4, 2, None, None)











Raising Parts of a Version

The semver module contains the following functions to raise parts of
a version:


	Version.bump_major: raises the major part and set all other parts to
zero. Set prerelease and build to None.


	Version.bump_minor: raises the minor part and sets patch to zero.
Set prerelease and build to None.


	Version.bump_patch: raises the patch part. Set prerelease and
build to None.


	Version.bump_prerelease: raises the prerelease part and set
build to None.


	Version.bump_build: raises the build part.




>>> str(Version.parse("3.4.5-pre.2+build.4").bump_major())
'4.0.0'
>>> str(Version.parse("3.4.5-pre.2+build.4").bump_minor())
'3.5.0'
>>> str(Version.parse("3.4.5-pre.2+build.4").bump_patch())
'3.4.6'
>>> str(Version.parse("3.4.5-pre.2+build.4").bump_prerelease())
'3.4.5-pre.3'
>>> str(Version.parse("3.4.5-pre.2+build.4").bump_build())
'3.4.5-pre.2+build.5'





Likewise the module level functions semver.bump_major().



Increasing Parts of a Version Taking into Account Prereleases


New in version 2.10.0: Added Version.next_version.



If you want to raise your version and take prereleases into account,
the function next_version
would perhaps a better fit.

>>> v = Version.parse("3.4.5-pre.2+build.4")
>>> str(v.next_version(part="prerelease"))
'3.4.5-pre.3'
>>> str(Version.parse("3.4.5-pre.2+build.4").next_version(part="patch"))
'3.4.5'
>>> str(Version.parse("3.4.5+build.4").next_version(part="patch"))
'3.4.5'
>>> str(Version.parse("0.1.4").next_version("prerelease"))
'0.1.5-rc.1'







Comparing Versions

To compare two versions depends on your type:


	Two strings

Use semver.compare():

>>> semver.compare("1.0.0", "2.0.0")
-1
>>> semver.compare("2.0.0", "1.0.0")
1
>>> semver.compare("2.0.0", "2.0.0")
0





The return value is negative if version1 < version2, zero if
version1 == version2 and strictly positive if version1 > version2.



	Two Version instances

Use the specific operator. Currently, the operators <,
<=, >, >=, ==, and != are supported:

>>> v1 = Version.parse("3.4.5")
>>> v2 = Version.parse("3.5.1")
>>> v1 < v2
True
>>> v1 > v2
False







	A Version type and a tuple() or list()

Use the operator as with two Version types:

>>> v = Version.parse("3.4.5")
>>> v > (1, 0)
True
>>> v < [3, 5]
True





The opposite does also work:

>>> (1, 0) < v
True
>>> [3, 5] > v
True







	A Version type and a str()

You can use also raw strings to compare:

>>> v > "1.0.0"
True
>>> v < "3.5.0"
True





The opposite does also work:

>>> "1.0.0" < v
True
>>> "3.5.0" > v
True





However, if you compare incomplete strings, you get a ValueError exception:

>>> v > "1.0"
Traceback (most recent call last):
...
ValueError: 1.0 is not valid SemVer string







	A Version type and a dict()

You can also use a dictionary. In contrast to strings, you can have an “incomplete”
version (as the other parts are set to zero):

>>> v > dict(major=1)
True





The opposite does also work:

>>> dict(major=1) < v
True





If the dictionary contains unknown keys, you get a TypeError exception:

>>> v > dict(major=1, unknown=42)
Traceback (most recent call last):
...
TypeError: ... got an unexpected keyword argument 'unknown'









Other types cannot be compared.

If you need to convert some types into others, refer to Converting a Version instance into Different Types.

The use of these comparison operators also implies that you can use builtin
functions that leverage this capability; builtins including, but not limited to: max(), min()
(for examples, see Getting Minimum and Maximum of Multiple Versions) and sorted().



Determining Version Equality

Version equality means for semver, that major, minor, patch, and prerelease
parts are equal in both versions you compare. The build part is ignored.
For example:

>>> v = Version.parse("1.2.3-rc4+1e4664d")
>>> v == "1.2.3-rc4+dedbeef"
True





This also applies when a Version is a member of a set, or a
dictionary key:

>>> d = {}
>>> v1 = Version.parse("1.2.3-rc4+1e4664d")
>>> v2 = Version.parse("1.2.3-rc4+dedbeef")
>>> d[v1] = 1
>>> d[v2]
1
>>> s = set()
>>> s.add(v1)
>>> v2 in s
True







Comparing Versions through an Expression

If you need a more fine-grained approach of comparing two versions,
use the semver.match() function. It expects two arguments:


	a version string


	a match expression




Currently, the match expression supports the following operators:


	< smaller than


	> greater than


	>= greater or equal than


	<= smaller or equal than


	== equal


	!= not equal




That gives you the following possibilities to express your condition:

>>> semver.match("2.0.0", ">=1.0.0")
True
>>> semver.match("1.0.0", ">1.0.0")
False







Getting Minimum and Maximum of Multiple Versions


Changed in version 2.10.2: The functions semver.max_ver() and semver.min_ver() are deprecated in
favor of their builtin counterparts max() and min().



Since Version implements
__gt__ and
__lt__, it can be used with builtins requiring:

>>> max([Version(0, 1, 0), Version(0, 2, 0), Version(0, 1, 3)])
Version(major=0, minor=2, patch=0, prerelease=None, build=None)
>>> min([Version(0, 1, 0), Version(0, 2, 0), Version(0, 1, 3)])
Version(major=0, minor=1, patch=0, prerelease=None, build=None)





Incidentally, using map(), you can get the min or max version of any number of versions of the same type
(convertible to Version).

For example, here are the maximum and minimum versions of a list of version strings:

>>> max(['1.1.0', '1.2.0', '2.1.0', '0.5.10', '0.4.99'], key=Version.parse)
'2.1.0'
>>> min(['1.1.0', '1.2.0', '2.1.0', '0.5.10', '0.4.99'], key=Version.parse)
'0.4.99'





And the same can be done with tuples:

>>> max(map(lambda v: Version(*v), [(1, 1, 0), (1, 2, 0), (2, 1, 0), (0, 5, 10), (0, 4, 99)])).to_tuple()
(2, 1, 0, None, None)
>>> min(map(lambda v: Version(*v), [(1, 1, 0), (1, 2, 0), (2, 1, 0), (0, 5, 10), (0, 4, 99)])).to_tuple()
(0, 4, 99, None, None)





For dictionaries, it is very similar to finding the max version tuple: see Converting a Version instance into Different Types.

The “old way” with semver.max_ver() or semver.min_ver() is still available, but not recommended:

>>> semver.max_ver("1.0.0", "2.0.0")
'2.0.0'
>>> semver.min_ver("1.0.0", "2.0.0")
'1.0.0'







Dealing with Invalid Versions

As semver follows the semver specification, it cannot parse version
strings which are considered “invalid” by that specification. The semver
library cannot know all the possible variations so you need to help the
library a bit.

For example, if you have a version string v1.2 would be an invalid
semver version.
However, “basic” version strings consisting of major, minor,
and patch part, can be easy to convert. The following function extract this
information and returns a tuple with two items:

import re
from semver import Version
from typing import Optional, Tuple


BASEVERSION = re.compile(
    r"""[vV]?
        (?P<major>0|[1-9]\d*)
        (\.
        (?P<minor>0|[1-9]\d*)
        (\.
            (?P<patch>0|[1-9]\d*)
        )?
        )?
    """,
    re.VERBOSE,
)


def coerce(version: str) -> Tuple[Version, Optional[str]]:
    """
    Convert an incomplete version string into a semver-compatible Version
    object

    * Tries to detect a "basic" version string (``major.minor.patch``).
    * If not enough components can be found, missing components are
        set to zero to obtain a valid semver version.

    :param str version: the version string to convert
    :return: a tuple with a :class:`Version` instance (or ``None``
        if it's not a version) and the rest of the string which doesn't
        belong to a basic version.
    :rtype: tuple(:class:`Version` | None, str)
    """
    match = BASEVERSION.search(version)
    if not match:
        return (None, version)

    ver = {
        key: 0 if value is None else value for key, value in match.groupdict().items()
    }
    ver = Version(**ver)
    rest = match.string[match.end() :]  # noqa:E203
    return ver, rest





The function returns a tuple, containing a Version
instance or None as the first element and the rest as the second element.
The second element (the rest) can be used to make further adjustments.

For example:

>>> coerce("v1.2")
(Version(major=1, minor=2, patch=0, prerelease=None, build=None), '')
>>> coerce("v2.5.2-bla")
(Version(major=2, minor=5, patch=2, prerelease=None, build=None), '-bla')







Replacing Deprecated Functions


Changed in version 2.10.0: The development team of semver has decided to deprecate certain functions on
the module level. The preferred way of using semver is through the
semver.Version class.



The deprecated functions can still be used in version 2.10.0 and above. In version 3 of
semver, the deprecated functions will be removed.

The following list shows the deprecated functions and how you can replace
them with code which is compatible for future versions:


	semver.bump_major(), semver.bump_minor(), semver.bump_patch(), semver.bump_prerelease(), semver.bump_build()

Replace them with the respective methods of the Version
class.
For example, the function semver.bump_major() is replaced by
semver.Version.bump_major() and calling the str(versionobject):

>>> s1 = semver.bump_major("3.4.5")
>>> s2 = str(Version.parse("3.4.5").bump_major())
>>> s1 == s2
True





Likewise with the other module level functions.



	semver.finalize_version()

Replace it with semver.Version.finalize_version():

>>> s1 = semver.finalize_version('1.2.3-rc.5')
>>> s2 = str(semver.Version.parse('1.2.3-rc.5').finalize_version())
>>> s1 == s2
True







	semver.format_version()

Replace it with str(versionobject):

>>> s1 = semver.format_version(5, 4, 3, 'pre.2', 'build.1')
>>> s2 = str(Version(5, 4, 3, 'pre.2', 'build.1'))
>>> s1 == s2
True







	semver.max_ver()

Replace it with max(version1, version2, ...) or max([version1, version2, ...]):

>>> s1 = semver.max_ver("1.2.3", "1.2.4")
>>> s2 = str(max(map(Version.parse, ("1.2.3", "1.2.4"))))
>>> s1 == s2
True







	semver.min_ver()

Replace it with min(version1, version2, ...) or min([version1, version2, ...]):

>>> s1 = semver.min_ver("1.2.3", "1.2.4")
>>> s2 = str(min(map(Version.parse, ("1.2.3", "1.2.4"))))
>>> s1 == s2
True







	semver.parse()

Replace it with semver.Version.parse() and
semver.Version.to_dict():

>>> v1 = semver.parse("1.2.3")
>>> v2 = Version.parse("1.2.3").to_dict()
>>> v1 == v2
True







	semver.parse_version_info()

Replace it with semver.Version.parse():

>>> v1 = semver.parse_version_info("3.4.5")
>>> v2 = Version.parse("3.4.5")
>>> v1 == v2
True







	semver.replace()

Replace it with semver.Version.replace():

>>> s1 = semver.replace("1.2.3", major=2, patch=10)
>>> s2 = str(Version.parse('1.2.3').replace(major=2, patch=10))
>>> s1 == s2
True











Displaying Deprecation Warnings

By default,  deprecation warnings are ignored in Python [https://docs.python.org/3/library/warnings.html#warning-categories].
This also affects semver’s own warnings.

It is recommended that you turn on deprecation warnings in your scripts. Use one of
the following methods:


	Use the option -Wd [https://docs.python.org/3/using/cmdline.html#cmdoption-w]
to enable default warnings:


	Directly running the Python command:

$ python3 -Wd scriptname.py







	Add the option in the shebang line (something like #!/usr/bin/python3)
after the command:

#!/usr/bin/python3 -Wd











	In your own scripts add a filter to ensure that all warnings are displayed:


import warnings
warnings.simplefilter("default")
# Call your semver code





For further details, see the section
Overriding the default filter [https://docs.python.org/3/library/warnings.html#overriding-the-default-filter]
of the Python documentation.










Creating Subclasses from Version

If you do not like creating functions to modify the behavior of semver
(as shown in section Dealing with Invalid Versions), you can
also create a subclass of the Version class.

For example, if you want to output a “v” prefix before a version,
but the other behavior is the same, use the following code:

class SemVerWithVPrefix(Version):
    """
    A subclass of Version which allows a "v" prefix
    """

    @classmethod
    def parse(cls, version: str) -> "SemVerWithVPrefix":
        """
        Parse version string to a Version instance.

        :param version: version string with "v" or "V" prefix
        :raises ValueError: when version does not start with "v" or "V"
        :return: a new instance
        """
        if not version[0] in ("v", "V"):
            raise ValueError(
                "{v!r}: not a valid semantic version tag. Must start with 'v' or 'V'".format(
                    v=version
                )
            )
        return super().parse(version[1:])

    def __str__(self) -> str:
        # Reconstruct the tag
        return "v" + super().__str__()





The derived class SemVerWithVPrefix can be used like
the original class:

>>> v1 = SemVerWithVPrefix.parse("v1.2.3")
>>> assert str(v1) == "v1.2.3"
>>> print(v1)
v1.2.3
>>> v2 = SemVerWithVPrefix.parse("v2.3.4")
>>> v2 > v1
True
>>> bad = SemVerWithVPrefix.parse("1.2.4")
Traceback (most recent call last):
...
ValueError: '1.2.4': not a valid semantic version tag. Must start with 'v' or 'V'









            

          

      

      

    



  
  
    
    

    Migrating from semver2 to semver3
    

    

    
 
  

    
      
          
            
  
Migrating from semver2 to semver3

This chapter describes the visible differences for
users and how your code stays compatible for semver3.

Although the development team tries to make the transition
to semver3 as smooth as possible, at some point change
is inevitable.

For a more detailed overview of all the changes, refer
to our Adding a Changelog Entry.


Use Version instead of VersionInfo

The VersionInfo has been renamed to Version
to have a more succinct name.
An alias has been created to preserve compatibility but
using the old name has been deprecated.

If you still need the old version, use this line:

from semver.version import Version as VersionInfo







Use semver.cli instead of semver

All functions related to CLI parsing are moved to semver.cli.
If you are such functions, like semver.cmd_bump,
import it from semver.cli in the future:

from semver.cli import cmd_bump









            

          

      

      

    



  
  
    
    

    Contributing to semver
    

    

    
 
  

    
      
          
            
  
Contributing to semver

The semver source code is managed using Git and is hosted on GitHub:

git clone git://github.com/python-semver/python-semver






Reporting Bugs and Asking Questions

If you think you have encountered a bug in semver or have an idea for a new
feature? Great! We like to hear from you!

There are several options to participate:


	Open a new topic on our GitHub discussion page.
Tell us our ideas or ask your questions.


	Look into our GitHub issues [https://github.com/python-semver/python-semver/issues] tracker or open a new issue.






Prerequisites

Before you make changes to the code, we would highly appreciate if you
consider the following general requirements:


	Make sure your code adheres to the Semantic Versioning [https://semver.org] specification.


	Check if your feature is covered by the Semantic Versioning specification.
If not, ask on its GitHub project https://github.com/semver/semver.






Modifying the Code

We recommend the following workflow:


	Fork our project on GitHub using this link:
https://github.com/python-semver/python-semver/fork


	Clone your forked Git repository (replace GITHUB_USER with your
account name on GitHub):

$ git clone git@github.com:GITHUB_USER/python-semver.git







	Create a new branch. You can name your branch whatever you like, but we
recommend to use some meaningful name. If your fix is based on a
existing GitHub issue, add also the number. Good examples would be:


	feature/123-improve-foo when implementing a new feature in issue 123


	bugfix/234-fix-security-bar a bugfixes for issue 234




Use this git command:

$ git checkout -b feature/NAME_OF_YOUR_FEATURE







	Work on your branch and create a pull request:


	Write test cases and run the complete test suite, see Running the Test Suite
for details.


	Write a changelog entry, see section Adding a Changelog Entry.


	If you have implemented a new feature, document it into our
documentation to help our reader. See section Documenting semver for
further details.


	Create a pull request [https://github.com/python-semver/python-semver/pulls]. Describe in the pull request what you did
and why. If you have open questions, ask.






	Wait for feedback. If you receive any comments, address these.


	After your pull request got accepted, delete your branch.






Running the Test Suite

We use pytest [http://pytest.org/] and tox [https://tox.rtfd.org/] to run tests against all supported Python
versions.  All test dependencies are resolved automatically.

You can decide to run the complete test suite or only part of it:


	To run all tests, use:

$ tox





If you have not all Python interpreters installed on your system
it will probably give you some errors (InterpreterNotFound).
To avoid such errors, use:

$ tox --skip-missing-interpreters





It is possible to use one or more specific Python versions. Use the -e
option and one or more abbreviations (py36 for Python 3.6, py37 for
Python 3.7 etc.):

$ tox -e py36
$ tox -e py36,py37





To get a complete list and a short description, run:

$ tox -av







	To run only a specific test, pytest requires the syntax
TEST_FILE::TEST_FUNCTION.

For example, the following line tests only the function
test_immutable_major() in the file test_bump.py for all
Python versions:

$ tox -e py36 -- tests/test_bump.py::test_should_bump_major





By default, pytest prints only a dot for each test function. To
reveal the executed test function, use the following syntax:

$ tox -- -v





You can combine the specific test function with the -e option, for
example, to limit the tests for Python 3.6 and 3.7 only:

$ tox -e py36,py37 -- tests/test_bump.py::test_should_bump_major









Our code is checked against formatting, style, type, and docstring issues
(black [https://black.rtfd.io], flake8 [https://flake8.rtfd.io], mypy [http://mypy-lang.org/], and docformatter [https://pypi.org/project/docformatter/]).
It is recommended to run your tests in combination with checks,
for example:

$ tox -e checks,py36,py37







Documenting semver

Documenting the features of semver is very important. It gives our developers
an overview what is possible with semver, how it “feels”, and how it is
used efficiently.


Note

To build the documentation locally use the following command:

$ tox -e docs





The built documentation is available in docs/_build/html.



A new feature is not complete if it isn’t proberly documented. A good
documentation includes:



	A docstring

Each docstring contains a summary line, a linebreak, an optional
directive (see next item), the description of its arguments in
Sphinx style [https://sphinx-rtd-tutorial.rtfd.io/en/latest/docstrings.html], and an optional doctest.
The docstring is extracted and reused in the API Reference section.
An appropriate docstring should look like this:

def to_tuple(self) -> VersionTuple:
   """
   Convert the Version object to a tuple.

   .. versionadded:: 2.10.0
      Renamed ``VersionInfo._astuple`` to ``VersionInfo.to_tuple`` to
      make this function available in the public API.

   :return: a tuple with all the parts

   >>> semver.Version(5, 3, 1).to_tuple()
   (5, 3, 1, None, None)
   """







	An optional directive

If you introduce a new feature, change a function/method, or remove something,
it is a good practice to introduce Sphinx directives into the docstring.
This gives the reader an idea what version is affected by this change.

The first required argument, VERSION, defines the version when this change
was introduced. You can choose from:


	.. versionadded:: VERSION

Use this directive to describe a new feature.



	.. versionchanged:: VERSION

Use this directive to describe when something has changed, for example,
new parameters were added, changed side effects, different return values, etc.



	.. deprecated:: VERSION

Use this directive when a feature is deprecated. Describe what should
be used instead, if appropriate.





Add such a directive after the summary line, as shown above.



	The documentation

A docstring is good, but in most cases it’s too dense. API documentation
cannot replace a good user documentation. Describe how
to use your new feature in our documentation. Here you can give your
readers more examples, describe it in a broader context or show
edge cases.










Adding a Changelog Entry

A “Changelog” is a record of all notable changes made to a project. Such
a changelog, in our case the CHANGELOG.rst, is read by our users.
Therefor, any description should be aimed to users instead of describing
internal changes which are only relevant to developers.

To avoid merge conflicts, we use the Towncrier [https://pypi.org/project/towncrier] package to manage our changelog.

The directory changelog.d contains “newsfragments” which are short
ReST-formatted files.
On release, those news fragments are compiled into our CHANGELOG.rst.

You don’t need to install towncrier yourself, use the tox command
to call the tool.

We recommend to follow the steps to make a smooth integration of your changes:


	After you have created a new pull request (PR), add a new file into the
directory changelog.d. Each filename follows the syntax:

<ISSUE>.<TYPE>.rst





where <ISSUE> is the GitHub issue number.
In case you have no issue but a pull request, prefix your number with pr.
<TYPE> is one of:


	bugfix: fixes a reported bug.


	deprecation: informs about deprecation warnings


	doc: improves documentation.


	feature: adds new user facing features.


	removal: removes obsolete or deprecated features.


	trivial: fixes a small typo or internal change that might be noteworthy.




For example: 123.feature.rst, pr233.removal.rst, 456.bugfix.rst etc.



	Create the new file with the command:

tox -e changelog -- create 123.feature.rst





The file is created int the changelog.d/ directory.



	Open the file and describe your changes in RST format.


	Wrap symbols like modules, functions, or classes into double backticks
so they are rendered in a monospace font.


	Prefer simple past tense or constructions with “now”.






	Check your changes with:

tox -e changelog -- check







	Optionally, build a draft version of the changelog file with the command:

tox -e changelog







	Commit all your changes and push it.




This finishes your steps.

On release, the maintainer compiles a new CHANGELOG.rst file by running:

tox -e changelog -- build





This will remove all newsfragments inside the changelog.d directory,
making it ready for the next release.





            

          

      

      

    



  
  
    
    

    API Reference
    

    

    
 
  

    
      
          
            
  
API Reference


Metadata semver.__about__

Metadata about semver.

Contains information about semver’s version, the implemented version
of the semver specifictation, author, maintainers, and description.


	
semver.__about__.__author__ = 'Kostiantyn Rybnikov'

	Original semver author






	
semver.__about__.__description__ = 'Python helper for Semantic Versioning (http://semver.org)'

	Short description about semver






	
semver.__about__.__maintainer__ = ['Sebastien Celles', 'Tom Schraitle']

	Current maintainer






	
semver.__about__.__version__ = '3.0.0-dev.3'

	Semver version






	
semver.__about__.SEMVER_SPEC_VERSION = '2.0.0'

	Supported semver specification







Deprecated Functions in semver._deprecated

Contains all deprecated functions.


	
semver._deprecated.deprecated(func=None, replace=None, version=None, category=<class 'DeprecationWarning'>)

	Decorates a function to output a deprecation warning.


	Parameters

	
	func (Optional[~F]) – the function to decorate


	replace (Optional[str]) – the function to replace (use the full qualified
name like semver.Version.bump_major.


	version (Optional[str]) – the first version when this function was deprecated.


	category (Type[Warning]) – allow you to specify the deprecation warning class
of your choice. By default, it’s  DeprecationWarning, but
you can choose PendingDeprecationWarning or a custom class.






	Return type

	Union[Callable[…, ~F], partial]



	Returns

	decorated function which is marked as deprecated











CLI Parsing semver.cli

CLI parsing for pysemver command.

Each command in pysemver is mapped to a cmd_ function.
The main function calls
createparser and
process to parse and process
all the commandline options.

The result of each command is printed on stdout.


	
semver.cli.cmd_bump(args)

	Subcommand: Bumps a version.

Synopsis: bump <PART> <VERSION>
<PART> can be major, minor, patch, prerelease, or build


	Parameters

	args (Namespace) – The parsed arguments



	Return type

	str



	Returns

	the new, bumped version










	
semver.cli.cmd_check(args)

	Subcommand: Checks if a string is a valid semver version.

Synopsis: check <VERSION>


	Parameters

	args (Namespace) – The parsed arguments



	Return type

	None










	
semver.cli.cmd_compare(args)

	Subcommand: Compare two versions

Synopsis: compare <VERSION1> <VERSION2>


	Parameters

	args (Namespace) – The parsed arguments



	Return type

	str










	
semver.cli.createparser()

	Create an argparse.ArgumentParser instance.


	Return type

	ArgumentParser



	Returns

	parser instance










	
semver.cli.main(cliargs=None)

	Entry point for the application script.


	Parameters

	cliargs (list) – Arguments to parse or None (=use sys.argv)



	Return type

	int



	Returns

	error code










	
semver.cli.process(args)

	Process the input from the CLI.


	Parameters

	
	args (Namespace) – The parsed arguments


	parser – the parser instance






	Return type

	str



	Returns

	result of the selected action











Entry point semver.__main__

Module to support call with __main__.py. Used to support the following
call:

$ python3 -m semver ...





This makes it also possible to “run” a wheel like in this command:

$ python3 semver-3*-py3-none-any.whl/semver -h







Version Handling semver.version

Version handling.


	
semver.version.VersionInfo

	Keep the VersionInfo name for compatibility






	
class semver.version.Version(major, minor=0, patch=0, prerelease=None, build=None)

	A semver compatible version class.


	Parameters

	
	major (SupportsInt) – version when you make incompatible API changes.


	minor (SupportsInt) – version when you add functionality in
a backwards-compatible manner.


	patch (SupportsInt) – version when you make backwards-compatible bug fixes.


	prerelease (Union[str, bytes, int, None]) – an optional prerelease string


	build (Union[str, bytes, int, None]) – an optional build string









	
__eq__(other)

	Return self==value.


	Return type

	bool










	
__ge__(other)

	Return self>=value.


	Return type

	bool










	
__getitem__(index)

	self.__getitem__(index) <==> self[index] Implement getitem.

If the part  requested is undefined, or a part of the range requested
is undefined, it will throw an index error.
Negative indices are not supported.


	Parameters

	index (Union[int, slice]) – a positive integer indicating the
offset or a slice() object



	Raises

	IndexError – if index is beyond the range or a part is None



	Return type

	Union[int, str, None, Tuple[Union[int, str], …]]



	Returns

	the requested part of the version at position index





>>> ver = semver.Version.parse("3.4.5")
>>> ver[0], ver[1], ver[2]
(3, 4, 5)










	
__gt__(other)

	Return self>value.


	Return type

	bool










	
__hash__()

	Return hash(self).


	Return type

	int










	
__iter__()

	Return iter(self).


	Return type

	Iterable[Union[int, str, None]]










	
__le__(other)

	Return self<=value.


	Return type

	bool










	
__lt__(other)

	Return self<value.


	Return type

	bool










	
__ne__(other)

	Return self!=value.


	Return type

	bool










	
__repr__()

	Return repr(self).


	Return type

	str










	
__str__()

	Return str(self).


	Return type

	str










	
property build: Optional[str]

	The build part of a version (read-only).


	Return type

	Optional[str]










	
bump_build(token='build')

	Raise the build part of the version, return a new object but leave self
untouched.


	Parameters

	token (str) – defaults to build



	Return type

	Version



	Returns

	new object with the raised build part





>>> ver = semver.parse("3.4.5-rc.1+build.9")
>>> ver.bump_build()
Version(major=3, minor=4, patch=5, prerelease='rc.1', build='build.10')










	
bump_major()

	Raise the major part of the version, return a new object but leave self
untouched.


	Return type

	Version



	Returns

	new object with the raised major part





>>> ver = semver.parse("3.4.5")
>>> ver.bump_major()
Version(major=4, minor=0, patch=0, prerelease=None, build=None)










	
bump_minor()

	Raise the minor part of the version, return a new object but leave self
untouched.


	Return type

	Version



	Returns

	new object with the raised minor part





>>> ver = semver.parse("3.4.5")
>>> ver.bump_minor()
Version(major=3, minor=5, patch=0, prerelease=None, build=None)










	
bump_patch()

	Raise the patch part of the version, return a new object but leave self
untouched.


	Return type

	Version



	Returns

	new object with the raised patch part





>>> ver = semver.parse("3.4.5")
>>> ver.bump_patch()
Version(major=3, minor=4, patch=6, prerelease=None, build=None)










	
bump_prerelease(token='rc')

	Raise the prerelease part of the version, return a new object but leave
self untouched.


	Parameters

	token (str) – defaults to rc



	Return type

	Version



	Returns

	new object with the raised prerelease part





>>> ver = semver.parse("3.4.5")
>>> ver.bump_prerelease()
Version(major=3, minor=4, patch=5, prerelease='rc.2', build=None)










	
compare(other)

	Compare self with other.


	Parameters

	other (Union[Version, Dict[str, Union[int, str, None]], Collection[Union[int, str, None]], str]) – the second version



	Return type

	int



	Returns

	The return value is negative if ver1 < ver2,
zero if ver1 == ver2 and strictly positive if ver1 > ver2





>>> semver.compare("2.0.0")
-1
>>> semver.compare("1.0.0")
1
>>> semver.compare("2.0.0")
0
>>> semver.compare(dict(major=2, minor=0, patch=0))
0










	
finalize_version()

	Remove any prerelease and build metadata from the version.


	Return type

	Version



	Returns

	a new instance with the finalized version string





>>> str(semver.Version.parse('1.2.3-rc.5').finalize_version())
'1.2.3'










	
classmethod isvalid(version)

	Check if the string is a valid semver version.


New in version 2.9.1.




	Parameters

	version (str) – the version string to check



	Return type

	bool



	Returns

	True if the version string is a valid semver version, False
otherwise.










	
property major: int

	The major part of a version (read-only).


	Return type

	int










	
match(match_expr)

	Compare self to match a match expression.


	Parameters

	match_expr (str) – operator and version; valid operators are
<`   smaller than
>   greater than
>=  greator or equal than
<=  smaller or equal than
==  equal
!=  not equal



	Return type

	bool



	Returns

	True if the expression matches the version, otherwise False





>>> semver.Version.parse("2.0.0").match(">=1.0.0")
True
>>> semver.Version.parse("1.0.0").match(">1.0.0")
False










	
property minor: int

	The minor part of a version (read-only).


	Return type

	int










	
next_version(part, prerelease_token='rc')

	Determines next version, preserving natural order.


New in version 2.10.0.



This function is taking prereleases into account.
The “major”, “minor”, and “patch” raises the respective parts like
the bump_* functions. The real difference is using the
“preprelease” part. It gives you the next patch version of the
prerelease, for example:

>>> str(semver.parse("0.1.4").next_version("prerelease"))
'0.1.5-rc.1'






	Parameters

	
	part (str) – One of “major”, “minor”, “patch”, or “prerelease”


	prerelease_token (str) – prefix string of prerelease, defaults to ‘rc’






	Return type

	Version



	Returns

	new object with the appropriate part raised










	
classmethod parse(version)

	Parse version string to a Version instance.


Changed in version 2.11.0: Changed method from static to classmethod to
allow subclasses.




	Parameters

	version (Union[str, bytes]) – version string



	Return type

	Version



	Returns

	a new Version instance



	Raises

	
	ValueError – if version is invalid


	TypeError – if version contains the wrong type








>>> semver.Version.parse('3.4.5-pre.2+build.4')
Version(major=3, minor=4, patch=5, prerelease='pre.2', build='build.4')










	
property patch: int

	The patch part of a version (read-only).


	Return type

	int










	
property prerelease: Optional[str]

	The prerelease part of a version (read-only).


	Return type

	Optional[str]










	
replace(**parts)

	Replace one or more parts of a version and return a new
Version object, but leave self untouched


New in version 2.9.0: Added Version.replace()




	Parameters

	parts (Union[int, str, None]) – the parts to be updated. Valid keys are:
major, minor, patch, prerelease, or build



	Return type

	Version



	Returns

	the new Version object with the changed
parts



	Raises

	TypeError – if parts contain invalid keys










	
to_dict()

	Convert the Version object to an OrderedDict.


New in version 2.10.0: Renamed VersionInfo._asdict to VersionInfo.to_dict to
make this function available in the public API.




	Return type

	Dict[str, Union[int, str, None]]



	Returns

	an OrderedDict with the keys in the order major, minor,
patch, prerelease, and build.





>>> semver.Version(3, 2, 1).to_dict()
OrderedDict([('major', 3), ('minor', 2), ('patch', 1), ('prerelease', None), ('build', None)])










	
to_tuple()

	Convert the Version object to a tuple.


New in version 2.10.0: Renamed VersionInfo._astuple to VersionInfo.to_tuple to
make this function available in the public API.




	Return type

	Tuple[int, int, int, Optional[str], Optional[str]]



	Returns

	a tuple with all the parts





>>> semver.Version(5, 3, 1).to_tuple()
(5, 3, 1, None, None)

















            

          

      

      

    



  
  
    
    

    pysemver 3.0.0-dev.3
    

    

    
 
  

    
      
          
            
  
pysemver 3.0.0-dev.3


Synopsis

pysemver <COMMAND> <OPTION>...







Description

The semver library provides a command line interface with the name
pysemver to make the functionality accessible for shell
scripts. The script supports several subcommands.


Global Options


	
-h, --help

	Display usage summary.






	
--version

	Show program’s version number and exit.








Commands


pysemver bump

Bump a version.

pysemver bump <PART> <VERSION>






	
<PART>

	The part to bump. Valid strings are major, minor,
patch, prerelease, or build. The part has the
following effects:


	major: Raise the major part of the version and set
minor and patch to zero, remove prerelease and build.


	minor: Raise the minor part of the version and set
patch to zero, remove prerelease and build.


	patch: Raise the patch part of the version and
remove prerelease and build.


	prerelease Raise the prerelease of the version and
remove the build part.


	build: Raise the build part.









	
<VERSION>

	The version to bump.





To bump a version, you pass the name of the part (major, minor,
patch, prerelease, or build) and the version string.
The bumped version is printed on standard out:

$ pysemver bump major 1.2.3
2.0.0
$ pysemver bump minor 1.2.3
1.3.0





If you pass a version string which is not a valid semantical version,
you get an error message and a return code != 0:

$ pysemver bump build 1.5
ERROR 1.5 is not valid SemVer string







pysemver check

Checks if a string is a valid semver version.

pysemver check <VERSION>






	
<VERSION>

	The version string to check.





The error code returned by the script indicates if the
version is valid (=0) or not (!=0):

$ pysemver check 1.2.3; echo $?
0
$ pysemver check 2.1; echo $?
ERROR Invalid version '2.1'
2







pysemver compare

Compare two versions.

pysemver compare <VERSION1> <VERSION2>






	
<VERSION1>

	First version






	
<VERSION2>

	Second version





When you compare two versions, the result is printed on standard out,
to indicates which is the bigger version:


	-1 if first version is smaller than the second version,


	0 if both versions are the same,


	1 if the first version is greater than the second version.







Return Code

The return code of the script (accessible by $? from the Bash)
indicates if the subcommand returned successfully nor not. It is not
meant as the result of the subcommand.

The result of the subcommand is printed on the standard out channel
(“stdout” or 0), any error messages to standard error (“stderr” or
2).

For example, to compare two versions, the command expects two valid
semver versions:

$ pysemver compare 1.2.3 2.4.0
-1
$ echo $?
0





The return code is zero, but the result is -1.

However, if you pass invalid versions, you get this situation:

$ pysemver compare 1.2.3 2.4
ERROR 2.4 is not valid SemVer string
$ echo $?
2





If you use the pysemver in your own scripts, check the
return code first before you process the standard output.



See also


	Documentation

	https://python-semver.readthedocs.io/



	Source code

	https://github.com/python-semver/python-semver



	Bug tracker

	https://github.com/python-semver/python-semver/issues









            

          

      

      

    



  
  
    
    

    Change Log
    

    

    
 
  

    
      
          
            
  
Change Log

Changes for the upcoming release can be found in
the “changelog.d” directory [https://github.com/python-semver/python-semver/tree/master/changelog.d]
in our repository.


Version 3.0.0-dev.3


	Released

	2022-01-19



	Maintainer

	Tom Schraitle






Bug Fixes


	#310 [https://github.com/python-semver/python-semver/issues/310]: Rework API documentation.
Follow a more “semi-manual” attempt and add auto directives
into docs/api.rst.






Improved Documentation


	#312 [https://github.com/python-semver/python-semver/issues/312]: Rework “Usage” section.


	Mention the rename of VersionInfo to
Version class


	Remove semver. prefix in doctests to make examples shorter


	Correct some references to dunder methods like
__getitem__(),
__gt__() etc.


	Remove inconsistencies and mention module level function as
deprecated and discouraged from using


	Make empty super() call in semverwithvprefix.py example






	#315 [https://github.com/python-semver/python-semver/issues/315]: Improve release procedure text






Trivial/Internal Changes


	#309 [https://github.com/python-semver/python-semver/issues/309]: Some (private) functions from the semver.version
module has been changed.

The following functions got renamed:


	function semver.version.comparator got renamed to
semver.version._comparator() as it is only useful
inside the Version class.


	function semver.version.cmp got renamed to
semver.version._cmp() as it is only useful
inside the Version class.




The following functions got integrated into the
Version class:


	function semver.version._nat_cmd as a classmethod


	function semver.version.ensure_str






	#313 [https://github.com/python-semver/python-semver/issues/313]: Correct tox.ini for changelog entry to skip
installation for semver. This should speed up the execution
of towncrier.


	#316 [https://github.com/python-semver/python-semver/issues/316]: Comparisons of Version class and other
types return now a NotImplemented constant instead
of a TypeError exception.

The NotImplemented [https://docs.python.org/3/library/constants.html#NotImplemented] section of the Python documentation recommends
returning this constant when comparing with __gt__, __lt__,
and other comparison operators to “to indicate that the operation is
not implemented with respect to the other type”.



	#319 [https://github.com/python-semver/python-semver/issues/319]: Introduce stages in .travis.yml
The config file contains now two stages: check and test. If
check fails, the test stage won’t be executed. This could
speed up things when some checks fails.


	#322 [https://github.com/python-semver/python-semver/issues/322]: Switch from Travis CI to GitHub Actions.


	#347 [https://github.com/python-semver/python-semver/issues/347]: Support Python 3.10 in GitHub Action and other config files.









Version 3.0.0-dev.2


	Released

	2020-11-01



	Maintainer

	Tom Schraitle






Deprecations


	#169 [https://github.com/python-semver/python-semver/issues/169]: Deprecate CLI functions not imported from semver.cli.






Features


	#169 [https://github.com/python-semver/python-semver/issues/169]: Create semver package and split code among different modules in the packages.


	Remove semver.py


	Create src/semver/__init__.py


	Create src/semver/cli.py for all CLI methods


	Create src/semver/_deprecated.py for the deprecated decorator and other deprecated functions


	Create src/semver/__main__.py to allow calling the CLI using python -m semver


	Create src/semver/_types.py to hold type aliases


	Create src/semver/version.py to hold the Version class (old name VersionInfo) and its utility functions


	Create src/semver/__about__.py for all the metadata variables






	#305 [https://github.com/python-semver/python-semver/issues/305]: Rename VersionInfo to Version but keep an alias for compatibility






Improved Documentation


	#304 [https://github.com/python-semver/python-semver/issues/304]: Several improvements in documentation:


	Reorganize API documentation.


	Add migration chapter from semver2 to semver3.


	Distinguish between changlog for version 2 and 3






	#305 [https://github.com/python-semver/python-semver/issues/305]: Add note about Version rename.






Trivial/Internal Changes


	#169 [https://github.com/python-semver/python-semver/issues/169]: Adapted infrastructure code to the new project layout.


	Replace setup.py with setup.cfg because the setup.cfg is easier to use


	Adapt documentation code snippets where needed


	Adapt tests


	Changed the deprecated to hardcode the semver package name in the warning.




Increase coverage to 100% for all non-deprecated APIs



	#304 [https://github.com/python-semver/python-semver/issues/304]: Support PEP-561 py.typed.

According to the mentioned PEP:


“Package maintainers who wish to support type checking
of their code MUST add a marker file named py.typed
to their package supporting typing.”




Add package_data to setup.cfg to include this marker in dist
and whl file.










Version 3.0.0-dev.1


	Released

	2020-10-26



	Maintainer

	Tom Schraitle






Deprecations


	PR #290 [https://github.com/python-semver/python-semver/pull/290]: For semver 3.0.0-alpha0:


	Remove anything related to Python2


	In tox.ini and .travis.yml
Remove targets py27, py34, py35, and pypy.
Add py38, py39, and nightly (allow to fail)


	In setup.py simplified file and remove
Tox and Clean classes


	Remove old Python versions (2.7, 3.4, 3.5, and pypy)
from Travis






	#234 [https://github.com/python-semver/python-semver/issues/234]: In setup.py simplified file and remove
Tox and Clean classes






Features


	PR #290 [https://github.com/python-semver/python-semver/pull/290]: Create semver 3.0.0-alpha0


	Update README.rst, mention maintenance
branch maint/v2.


	Remove old code mainly used for Python2 compatibility,
adjusted code to support Python3 features.


	Split test suite into separate files under tests/
directory


	Adjust and update setup.py. Requires Python >=3.6.*
Extract metadata directly from source (affects all the __version__,
__author__ etc. variables)






	#270 [https://github.com/python-semver/python-semver/issues/270]: Configure Towncrier (PR #273 [https://github.com/python-semver/python-semver/pull/273]:)


	Add changelog.d/.gitignore to keep this directory


	Create changelog.d/README.rst with some descriptions


	Add changelog.d/_template.rst as Towncrier template


	Add [tool.towncrier] section in pyproject.toml


	Add “changelog” target into tox.ini. Use it like
tox -e changelog -- CMD whereas CMD is a
Towncrier command. The default tox -e changelog
calls Towncrier to create a draft of the changelog file
and output it to stdout.


	Update documentation and add include a new section
“Changelog” included from changelog.d/README.rst.






	#276 [https://github.com/python-semver/python-semver/issues/276]: Document how to create a sublass from VersionInfo class


	#213 [https://github.com/python-semver/python-semver/issues/213]: Add typing information






Bug Fixes


	#291 [https://github.com/python-semver/python-semver/issues/291]: Disallow negative numbers in VersionInfo arguments
for major, minor, and patch.






Improved Documentation


	PR #290 [https://github.com/python-semver/python-semver/pull/290]: Several improvements in the documentation:


	New layout to distinguish from the semver2 development line.


	Create new logo.


	Remove any occurances of Python2.


	Describe changelog process with Towncrier.


	Update the release process.










Trivial/Internal Changes


	PR #290 [https://github.com/python-semver/python-semver/pull/290]: Add supported Python versions to black.









            

          

      

      

    



  
  
    
    

    Change Log semver2
    

    

    
 
  

    
      
          
            
  
Change Log semver2

This changelog contains older entries for semver2.




Version 2.13.0


	Released

	2020-10-20



	Maintainer

	Tom Schraitle






Features


	PR #287 [https://github.com/python-semver/python-semver/pull/287]: Document how to create subclass from VersionInfo






Bug Fixes


	PR #283 [https://github.com/python-semver/python-semver/pull/283]: Ensure equal versions have equal hashes.
Version equality means for semver, that major,
minor, patch, and prerelease parts are
equal in both versions you compare. The build part
is ignored.






Additions

n/a



Deprecations

n/a






Version 2.12.0


	Released

	2020-10-19



	Maintainer

	Tom Schraitle






Bug Fixes


	#291 [https://github.com/python-semver/python-semver/issues/291] (PR #292 [https://github.com/python-semver/python-semver/pull/292]): Disallow negative numbers of
major, minor, and patch for semver.VersionInfo









Version 2.11.0


	Released

	2020-10-17



	Maintainer

	Tom Schraitle






Bug Fixes


	
	#276 [https://github.com/python-semver/python-semver/issues/276] (PR #277 [https://github.com/python-semver/python-semver/pull/277]): VersionInfo.parse should be a class method
	Also add authors and update changelog in #286 [https://github.com/python-semver/python-semver/issues/286]







	#274 [https://github.com/python-semver/python-semver/issues/274] (PR #275 [https://github.com/python-semver/python-semver/pull/275]): Py2 vs. Py3 incompatibility TypeError









Version 2.10.2


	Released

	2020-06-15



	Maintainer

	Tom Schraitle






Features

#268 [https://github.com/python-semver/python-semver/issues/268]: Increase coverage



Bug Fixes


	#260 [https://github.com/python-semver/python-semver/issues/260] (PR #261 [https://github.com/python-semver/python-semver/pull/261]): Fixed __getitem__ returning None on wrong parts


	PR #263 [https://github.com/python-semver/python-semver/pull/263]: Doc: Add missing “install” subcommand for openSUSE






Deprecations


	
	#160 [https://github.com/python-semver/python-semver/issues/160] (PR #264 [https://github.com/python-semver/python-semver/pull/264]):
	
	semver.max_ver()


	semver.min_ver()

















Version 2.10.1


	Released

	2020-05-13



	Maintainer

	Tom Schraitle






Features


	PR #249 [https://github.com/python-semver/python-semver/pull/249]: Added release policy and version restriction in documentation to
help our users which would like to stay on the major 2 release.


	PR #250 [https://github.com/python-semver/python-semver/pull/250]: Simplified installation semver on openSUSE with obs://.


	PR #256 [https://github.com/python-semver/python-semver/pull/256]: Made docstrings consistent






Bug Fixes


	#251 [https://github.com/python-semver/python-semver/issues/251] (PR #254 [https://github.com/python-semver/python-semver/pull/254]): Fixed return type of semver.VersionInfo.next_version
to always return a VersionInfo instance.









Version 2.10.0


	Released

	2020-05-05



	Maintainer

	Tom Schraitle






Features


	PR #138 [https://github.com/python-semver/python-semver/pull/138]: Added __getitem__ magic method to semver.VersionInfo class.
Allows to access a version like version[1].


	PR #235 [https://github.com/python-semver/python-semver/pull/235]: Improved documentation and shift focus on semver.VersionInfo instead of advertising
the old and deprecated module-level functions.


	PR #230 [https://github.com/python-semver/python-semver/pull/230]: Add version information in some functions:


	Use .. versionadded:: RST directive in docstrings to
make it more visible when something was added


	Minor wording fix in docstrings (versions -> version strings)










Bug Fixes


	#224 [https://github.com/python-semver/python-semver/issues/224] (PR #226 [https://github.com/python-semver/python-semver/pull/226]): In setup.py, replaced in class clean,
super(CleanCommand, self).run() with CleanCommand.run(self)


	#244 [https://github.com/python-semver/python-semver/issues/244] (PR #245 [https://github.com/python-semver/python-semver/pull/245]): Allow comparison with VersionInfo, tuple/list, dict, and string.






Additions


	PR #228 [https://github.com/python-semver/python-semver/pull/228]: Added better doctest integration






Deprecations


	#225 [https://github.com/python-semver/python-semver/issues/225] (PR #229 [https://github.com/python-semver/python-semver/pull/229]): Output a DeprecationWarning for the following functions:


	semver.parse


	semver.parse_version_info


	semver.format_version


	semver.bump_{major,minor,patch,prerelease,build}


	semver.finalize_version


	semver.replace


	semver.VersionInfo._asdict (use the new, public available
function semver.VersionInfo.to_dict())


	semver.VersionInfo._astuple (use the new, public available
function semver.VersionInfo.to_tuple())




These deprecated functions will be removed in semver 3.










Version 2.9.1


	Released

	2020-02-16



	Maintainer

	Tom Schraitle






Features


	#177 [https://github.com/python-semver/python-semver/issues/177] (PR #178 [https://github.com/python-semver/python-semver/pull/178]): Fixed repository and CI links (moved https://github.com/k-bx/python-semver/ repository to https://github.com/python-semver/python-semver/)


	PR #179 [https://github.com/python-semver/python-semver/pull/179]: Added note about moving this project to the new python-semver organization on GitHub


	#187 [https://github.com/python-semver/python-semver/issues/187] (PR #188 [https://github.com/python-semver/python-semver/pull/188]): Added logo for python-semver organization and documentation


	#191 [https://github.com/python-semver/python-semver/issues/191] (PR #194 [https://github.com/python-semver/python-semver/pull/194]): Created manpage for pysemver


	#196 [https://github.com/python-semver/python-semver/issues/196] (PR #197 [https://github.com/python-semver/python-semver/pull/197]): Added distribution specific installation instructions


	#201 [https://github.com/python-semver/python-semver/issues/201] (PR #202 [https://github.com/python-semver/python-semver/pull/202]): Reformatted source code with black


	#208 [https://github.com/python-semver/python-semver/issues/208] (PR #209 [https://github.com/python-semver/python-semver/pull/209]): Introduce new function semver.VersionInfo.isvalid()
and extend pysemver with check subcommand


	#210 [https://github.com/python-semver/python-semver/issues/210] (PR #215 [https://github.com/python-semver/python-semver/pull/215]): Document how to deal with invalid versions


	PR #212 [https://github.com/python-semver/python-semver/pull/212]: Improve docstrings according to PEP257






Bug Fixes


	#192 [https://github.com/python-semver/python-semver/issues/192] (PR #193 [https://github.com/python-semver/python-semver/pull/193]): Fixed “pysemver” and “pysemver bump” when called without arguments









Version 2.9.0


	Released

	2019-10-30



	Maintainer

	Sébastien Celles <s.celles@gmail.com>






Features


	#59 [https://github.com/python-semver/python-semver/issues/59] (PR #164 [https://github.com/python-semver/python-semver/pull/164]): Implemented a command line interface


	#85 [https://github.com/python-semver/python-semver/issues/85] (PR #147 [https://github.com/python-semver/python-semver/pull/147], PR #154 [https://github.com/python-semver/python-semver/pull/154]): Improved contribution section


	#104 [https://github.com/python-semver/python-semver/issues/104] (PR #125 [https://github.com/python-semver/python-semver/pull/125]): Added iterator to semver.VersionInfo()


	#112 [https://github.com/python-semver/python-semver/issues/112], #113 [https://github.com/python-semver/python-semver/issues/113]: Added Python 3.7 support


	PR #120 [https://github.com/python-semver/python-semver/pull/120]: Improved test_immutable function with properties


	PR #125 [https://github.com/python-semver/python-semver/pull/125]: Created setup.cfg for pytest and tox


	#126 [https://github.com/python-semver/python-semver/issues/126] (PR #127 [https://github.com/python-semver/python-semver/pull/127]): Added target for documentation in tox.ini


	#142 [https://github.com/python-semver/python-semver/issues/142] (PR #143 [https://github.com/python-semver/python-semver/pull/143]): Improved usage section


	#144 [https://github.com/python-semver/python-semver/issues/144] (PR #156 [https://github.com/python-semver/python-semver/pull/156]): Added semver.replace() and semver.VersionInfo.replace()
functions


	#145 [https://github.com/python-semver/python-semver/issues/145] (PR #146 [https://github.com/python-semver/python-semver/pull/146]): Added posargs in tox.ini


	PR #157 [https://github.com/python-semver/python-semver/pull/157]: Introduce conftest.py to improve doctests


	PR #165 [https://github.com/python-semver/python-semver/pull/165]: Improved code coverage


	PR #166 [https://github.com/python-semver/python-semver/pull/166]: Reworked .gitignore file


	#167 [https://github.com/python-semver/python-semver/issues/167] (PR #168 [https://github.com/python-semver/python-semver/pull/168]): Introduced global constant SEMVER_SPEC_VERSION






Bug Fixes


	#102 [https://github.com/python-semver/python-semver/issues/102]: Fixed comparison between VersionInfo and tuple


	#103 [https://github.com/python-semver/python-semver/issues/103]: Disallow comparison between VersionInfo and string (and int)


	#121 [https://github.com/python-semver/python-semver/issues/121] (PR #122 [https://github.com/python-semver/python-semver/pull/122]): Use python3 instead of python3.4 in tox.ini


	PR #123 [https://github.com/python-semver/python-semver/pull/123]: Improved __repr__() and derive class name from type()


	#128 [https://github.com/python-semver/python-semver/issues/128] (PR #129 [https://github.com/python-semver/python-semver/pull/129]): Fixed wrong datatypes in docstring for semver.format_version()


	#135 [https://github.com/python-semver/python-semver/issues/135] (PR #140 [https://github.com/python-semver/python-semver/pull/140]): Converted prerelease and build to string


	#136 [https://github.com/python-semver/python-semver/issues/136] (PR #151 [https://github.com/python-semver/python-semver/pull/151]): Added testsuite to tarball


	#154 [https://github.com/python-semver/python-semver/issues/154] (PR #155 [https://github.com/python-semver/python-semver/pull/155]): Improved README description






Removals


	#111 [https://github.com/python-semver/python-semver/issues/111] (PR #110 [https://github.com/python-semver/python-semver/pull/110]): Dropped Python 3.3


	#148 [https://github.com/python-semver/python-semver/issues/148] (PR #149 [https://github.com/python-semver/python-semver/pull/149]): Removed and replaced python setup.py test









Version 2.8.2


	Released

	2019-05-19



	Maintainer

	Sébastien Celles <s.celles@gmail.com>





Skipped, not released.





Version 2.8.1


	Released

	2018-07-09



	Maintainer

	Sébastien Celles <s.celles@gmail.com>






Features


	#40 [https://github.com/python-semver/python-semver/issues/40] (PR #88 [https://github.com/python-semver/python-semver/pull/88]): Added a static parse method to VersionInfo


	#77 [https://github.com/python-semver/python-semver/issues/77] (PR #47 [https://github.com/python-semver/python-semver/pull/47]): Converted multiple tests into pytest.mark.parametrize


	#87 [https://github.com/python-semver/python-semver/issues/87], #94 [https://github.com/python-semver/python-semver/issues/94] (PR #93 [https://github.com/python-semver/python-semver/pull/93]): Removed named tuple inheritance.


	#89 [https://github.com/python-semver/python-semver/issues/89] (PR #90 [https://github.com/python-semver/python-semver/pull/90]): Added doctests.






Bug Fixes


	#98 [https://github.com/python-semver/python-semver/issues/98] (PR #99 [https://github.com/python-semver/python-semver/pull/99]): Set prerelease and build to None by default


	#96 [https://github.com/python-semver/python-semver/issues/96] (PR #97 [https://github.com/python-semver/python-semver/pull/97]): Made VersionInfo immutable









Version 2.8.0


	Released

	2018-05-16



	Maintainer

	Sébastien Celles <s.celles@gmail.com>






Changes


	#82 [https://github.com/python-semver/python-semver/issues/82] (PR #83 [https://github.com/python-semver/python-semver/pull/83]): Renamed test.py to test_semver.py so
py.test can autodiscover test file






Additions


	#79 [https://github.com/python-semver/python-semver/issues/79] (PR #81 [https://github.com/python-semver/python-semver/pull/81], PR #84 [https://github.com/python-semver/python-semver/pull/84]): Defined and improve a release procedure file


	#72 [https://github.com/python-semver/python-semver/issues/72], #73 [https://github.com/python-semver/python-semver/issues/73] (PR #75 [https://github.com/python-semver/python-semver/pull/75]): Implemented __str__() and __hash__()






Removals


	#76 [https://github.com/python-semver/python-semver/issues/76] (PR #80 [https://github.com/python-semver/python-semver/pull/80]): Removed Python 2.6 compatibility









Version 2.7.9


	Released

	2017-09-23



	Maintainer

	Kostiantyn Rybnikov <k-bx@k-bx.com>






Additions


	#65 [https://github.com/python-semver/python-semver/issues/65] (PR #66 [https://github.com/python-semver/python-semver/pull/66]): Added semver.finalize_version() function.









Version 2.7.8


	Released

	2017-08-25



	Maintainer

	Kostiantyn Rybnikov <k-bx@k-bx.com>






	#62 [https://github.com/python-semver/python-semver/issues/62]: Support custom default names for pre and build








Version 2.7.7


	Released

	2017-05-25



	Maintainer

	Kostiantyn Rybnikov <k-bx@k-bx.com>






	#54 [https://github.com/python-semver/python-semver/issues/54] (PR #55 [https://github.com/python-semver/python-semver/pull/55]): Added comparision between VersionInfo objects


	PR #56 [https://github.com/python-semver/python-semver/pull/56]: Added support for Python 3.6








Version 2.7.2


	Released

	2016-11-08



	Maintainer

	Kostiantyn Rybnikov <k-bx@k-bx.com>






Additions


	Added semver.parse_version_info() to parse a version string to a
version info tuple.






Bug Fixes


	#37 [https://github.com/python-semver/python-semver/issues/37]: Removed trailing zeros from prelease doesn’t allow to
parse 0 pre-release version


	Refine parsing to conform more strictly to SemVer 2.0.0.

SemVer 2.0.0 specification §9 forbids leading zero on identifiers in
the prerelease version.










Version 2.6.0


	Released

	2016-06-08



	Maintainer

	Kostiantyn Rybnikov <k-bx@k-bx.com>






Removals


	Remove comparison of build component.

SemVer 2.0.0 specification recommends that build component is
ignored in comparisons.










Version 2.5.0


	Released

	2016-05-25



	Maintainer

	Kostiantyn Rybnikov <k-bx@k-bx.com>






Additions


	Support matching ‘not equal’ with “!=”.






Changes


	Made separate builds for tests on Travis CI.









Version 2.4.2


	Released

	2016-05-16



	Maintainer

	Kostiantyn Rybnikov <k-bx@k-bx.com>






Changes


	Migrated README document to reStructuredText format.


	Used Setuptools for distribution management.


	Migrated test cases to Py.test.


	Added configuration for Tox test runner.









Version 2.4.1


	Released

	2016-03-04



	Maintainer

	Kostiantyn Rybnikov <k-bx@k-bx.com>






Additions


	#23 [https://github.com/python-semver/python-semver/issues/23]: Compared build component of a version.









Version 2.4.0


	Released

	2016-02-12



	Maintainer

	Kostiantyn Rybnikov <k-bx@k-bx.com>






Bug Fixes


	#21 [https://github.com/python-semver/python-semver/issues/21]: Compared alphanumeric components correctly.









Version 2.3.1


	Released

	2016-01-30



	Maintainer

	Kostiantyn Rybnikov <k-bx@k-bx.com>






Additions


	Declared granted license name in distribution metadata.









Version 2.3.0


	Released

	2016-01-29



	Maintainer

	Kostiantyn Rybnikov <k-bx@k-bx.com>






Additions


	Added functions to increment prerelease and build components in a
version.









Version 2.2.1


	Released

	2015-08-04



	Maintainer

	Kostiantyn Rybnikov <k-bx@k-bx.com>






Bug Fixes


	Corrected comparison when any component includes zero.









Version 2.2.0


	Released

	2015-06-21



	Maintainer

	Kostiantyn Rybnikov <k-bx@k-bx.com>






Additions


	Add functions to determined minimum and maximum version.


	Add code examples for recently-added functions.









Version 2.1.2


	Released

	2015-05-23



	Maintainer

	Kostiantyn Rybnikov <k-bx@k-bx.com>






Bug Fixes


	Restored current README document to distribution manifest.









Version 2.1.1


	Released

	2015-05-23



	Maintainer

	Kostiantyn Rybnikov <k-bx@k-bx.com>






Bug Fixes


	Removed absent document from distribution manifest.









Version 2.1.0


	Released

	2015-05-22



	Maintainer

	Kostiantyn Rybnikov <k-bx@k-bx.com>






Additions


	Documented installation instructions.


	Documented project home page.


	Added function to format a version string from components.


	Added functions to increment specific components in a version.






Changes


	Migrated README document to Markdown format.






Bug Fixes


	Corrected code examples in README document.









Version 2.0.2


	Released

	2015-04-14



	Maintainer

	Konstantine Rybnikov <k-bx@k-bx.com>






Additions


	Added configuration for Travis continuous integration.


	Explicitly declared supported Python versions.









Version 2.0.1


	Released

	2014-09-24



	Maintainer

	Konstantine Rybnikov <k-bx@k-bx.com>






Bug Fixes


	#9 [https://github.com/python-semver/python-semver/issues/9]: Fixed comparison of equal version strings.









Version 2.0.0


	Released

	2014-05-24



	Maintainer

	Konstantine Rybnikov <k-bx@k-bx.com>






Additions


	Grant license in this code base under BSD 3-clause license terms.






Changes


	Update parser to SemVer standard 2.0.0.


	Ignore build component for comparison.









Version 0.0.2


	Released

	2012-05-10



	Maintainer

	Konstantine Rybnikov <k-bx@k-bx.com>






Changes


	Use standard library Distutils for distribution management.









Version 0.0.1


	Released

	2012-04-28



	Maintainer

	Konstantine Rybnikov <kost-bebix@yandex.ru>






	Initial release.








            

          

      

      

    



  
  
    
    
    Python Module Index
    

    

    

 


  

    
      
          
            

   Python Module Index


   
   s
   


   
     		 	

     		
       s	

     
       	[image: -]
       	
       semver	
       

     
       	
       	   
       semver.__about__	
       

     
       	
       	   
       semver.__main__	
       

     
       	
       	   
       semver._deprecated	
       

     
       	
       	   
       semver.cli	
       

     
       	
       	   
       semver.version	
       

   



            

          

      

      

    



  
  
    
    
    Index
    

    

    
 
  

    
      
          
            

Index



 Symbols
 | _
 | B
 | C
 | D
 | F
 | I
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 


Symbols


  	
      	
    --help

      
        	pysemver command line option


      


      	
    --version

      
        	pysemver command line option


      


      	
    -h

      
        	pysemver command line option


      


      	
    <PART>

      
        	pysemver command line option


      


  

  	
      	
    <VERSION1>

      
        	pysemver command line option


      


      	
    <VERSION2>

      
        	pysemver command line option


      


      	
    <VERSION>

      
        	pysemver command line option, [1]


      


  





_


  	
      	__author__ (in module semver.__about__)


      	__description__ (in module semver.__about__)


      	__eq__() (semver.version.Version method)


      	__ge__() (semver.version.Version method)


      	__getitem__() (semver.version.Version method)


      	__gt__() (semver.version.Version method)


      	__hash__() (semver.version.Version method)


  

  	
      	__iter__() (semver.version.Version method)


      	__le__() (semver.version.Version method)


      	__lt__() (semver.version.Version method)


      	__maintainer__ (in module semver.__about__)


      	__ne__() (semver.version.Version method)


      	__repr__() (semver.version.Version method)


      	__str__() (semver.version.Version method)


      	__version__ (in module semver.__about__)


  





B


  	
      	build (semver.version.Version property)


      	bump_build() (semver.version.Version method)


      	bump_major() (semver.version.Version method)


  

  	
      	bump_minor() (semver.version.Version method)


      	bump_patch() (semver.version.Version method)


      	bump_prerelease() (semver.version.Version method)


  





C


  	
      	cmd_bump() (in module semver.cli)


      	cmd_check() (in module semver.cli)


  

  	
      	cmd_compare() (in module semver.cli)


      	compare() (semver.version.Version method)


      	createparser() (in module semver.cli)


  





D


  	
      	deprecated() (in module semver._deprecated)


  





F


  	
      	finalize_version() (semver.version.Version method)


  





I


  	
      	isvalid() (semver.version.Version class method)


  





M


  	
      	main() (in module semver.cli)


      	major (semver.version.Version property)


      	match() (semver.version.Version method)


      	minor (semver.version.Version property)


      	
    module

      
        	semver.__about__


        	semver.__main__


        	semver._deprecated


        	semver.cli


        	semver.version


      


  





N


  	
      	next_version() (semver.version.Version method)


  





P


  	
      	parse() (semver.version.Version class method)


      	patch (semver.version.Version property)


      	prerelease (semver.version.Version property)


      	process() (in module semver.cli)


      	
    pysemver command line option

      
        	--help


        	--version


        	-h


        	<PART>


        	<VERSION1>


        	<VERSION2>


        	<VERSION>, [1]


      


  





R


  	
      	replace() (semver.version.Version method)


  





S


  	
      	
    semver.__about__

      
        	module


      


      	
    semver.__main__

      
        	module


      


      	
    semver._deprecated

      
        	module


      


  

  	
      	
    semver.cli

      
        	module


      


      	
    semver.version

      
        	module


      


      	SEMVER_SPEC_VERSION (in module semver.__about__)


  





T


  	
      	to_dict() (semver.version.Version method)


  

  	
      	to_tuple() (semver.version.Version method)


  





V


  	
      	Version (class in semver.version)


  

  	
      	VersionInfo (in module semver.version)


  







            

          

      

      

    



  
  
    
    

    Quickstart
    

    

    
 
  

    
      
          
            
  If you are searching for how to stay compatible
with semver3, refer to Migrating from semver2 to semver3.


Warning

This is a development version. Do NOT use it
in production before the final 3.0.0 is released.




Quickstart

A Python module for semantic versioning [http://semver.org/]. Simplifies comparing versions.

[image: Python] [image: Python versions] [https://pypi.org/project/semver] [image: Monthly downloads from PyPI] [https://pypi.org/project/semver] [image: Software license] [https://github.com/python-semver/python-semver/blob/master/LICENSE.txt] [image: Documentation Status] [http://python-semver.readthedocs.io/en/latest/?badge=latest] [image: Black Formatter] [https://github.com/psf/black]
[image: Percentage of open issues] [http://isitmaintained.com/project/python-semver/python-semver] [image: GitHub Discussion] [https://github.com/python-semver/python-semver/discussions]


Note

This project works for Python 3.6 and greater only. If you are
looking for a compatible version for Python 2, use the
maintenance branch maint/v2 [https://github.com/python-semver/python-semver/tree/maint/v2].

The last version of semver which supports Python 2.7 to 3.5 will be
2.x.y However, keep in mind, the major 2 release is frozen: no new
features nor backports will be integrated.

We recommend to upgrade your workflow to Python 3.x to gain support,
bugfixes, and new features.



The module follows the MAJOR.MINOR.PATCH style:


	MAJOR version when you make incompatible API changes,


	MINOR version when you add functionality in a backwards compatible manner, and


	PATCH version when you make backwards compatible bug fixes.




Additional labels for pre-release and build metadata are supported.

To import this library, use:

>>> import semver





Working with the library is quite straightforward. To turn a version string into the
different parts, use the semver.Version.parse function:

>>> ver = semver.Version.parse('1.2.3-pre.2+build.4')
>>> ver.major
1
>>> ver.minor
2
>>> ver.patch
3
>>> ver.prerelease
'pre.2'
>>> ver.build
'build.4'





To raise parts of a version, there are a couple of functions available for
you. The function semver.Version.bump_major leaves the original object untouched, but
returns a new semver.Version instance with the raised major part:

>>> ver = semver.Version.parse("3.4.5")
>>> ver.bump_major()
Version(major=4, minor=0, patch=0, prerelease=None, build=None)





It is allowed to concatenate different “bump functions”:

>>> ver.bump_major().bump_minor()
Version(major=4, minor=1, patch=0, prerelease=None, build=None)





To compare two versions, semver provides the semver.compare function.
The return value indicates the relationship between the first and second
version:

>>> semver.compare("1.0.0", "2.0.0")
-1
>>> semver.compare("2.0.0", "1.0.0")
1
>>> semver.compare("2.0.0", "